سر تیتر را اینجا وارد کنید
گفتوگوی ایسنا با سید مهدی حسینی، مدیر ارشد سلامت هوشمند فناپ زیرساخت
فناوریهای نوپدید دیجیتال، با دگرگون کردن مناسبات حرفهای و فرایندهای کسب و کاری، فرهنگ و تجربه مشتری را با ساختاری نوین بازآفرینی کردهاند و حوزه سلامت و درمان بهعنوان یکی از بسترهای راهبردی بهرهگیری از فناوریهای نوپدید به شمار میآید.
به گزارش ایسنا، با رویکرد تحول دیجیتال امروزه بیمارستان ها و مراکز درمانی پیشرو با پیادهسازی سامانههای یکپارچه هوشمند و داده محور و همچنین بهرهگیری از فناوریهایی نظیر هوش مصنوعی (AI)، بر بهبود فرایند تشخیص و درمان با کمک گرفتن از «سیستمهای پشتیبان تصمیم گیری» (Decision Support System)، تمرکز کردهاند.
الگوریتم های هوش مصنوعی بطور فزایندهای برای بهبود تشخیص بالینی علائم بیماری در زمینه هایی مانند رادیولوژی، پوست، گوارش، چشم پزشکی و آسیب شناسی مورد استفاده قرار گرفته است، با این حال، تمرکز بر رویکرد تحول دیجیتال، فقط بمنظور بهبود تشخیصهای پزشکی، اشتباه است. بیمارستانها میتوانند در چندین حوزه کلیدی از تحول دیجیتال برای بهبود مستمر برنامههای عملیاتی و ایجاد ارزش و مطلوبیت برای ذینفعان، شامل بیمار، کادر درمان، نوبت دهی و مدیریت زنجیره تامین استفاده کنند.
در همین راستا، مهدی حسینی – مدیر ارشد سلامت هوشمند فناپ زیرساخت – در گفتوگو با ایسنا، با بیان اینکه، از آنجا که بیمارستانها تلاش می کنند مراقبت های مناسب و سفارشیسازی شده را در زمان مناسب به یک بیمار مشخص، ارائه دهند بنابراین انجام دو کار ضروری است، اظهار کرد: نخست ارزیابی دقیق فرایند تشخیص و درمان بیماران و دوم مدیریت موثر منابع بیمارستانی. برخی از آنها برای فرایند تشخیصی و درمان تا حدودی آموزش دیده اند، اما مهارت و قابلیت لازم برای مدیریت موثر منابع بیمارستانی ندارند و این مسئله چالشبرانگیزی است، به ویژه در دورانی که همه گیری کووید-۱۹ به اوج رسیده بود، این موضوع فشار بالایی بر ظرفیت بیمارستانها وارد کرد.
وی افزود: در بیمارستان، سیستمهای عملیاتی «پشتیبان تصمیمگیری» که مبتنی بر دادهها هستند (Data Driven DSS)، میتوانند بینشهای ارزشمندی را برای کمک به تصمیمگیری در حوزه های تریاژ (اولویتبندی بیماران برای بهرهمندی از درمان)، پذیرش و ترخیص ارائه دهند. برای مثال، وقتی در بخش پذیرش مطمئن نیستند که بیمار تازه وارد،پ باید به آیسییو فرستاده شود یا به بخش عمومی، یک الگوریتم پشتیبان تصمیمگیری میتواند توصیه هایی را براساس اولویتهای پیشبینی شده برای پذیرش در آی سی یو ویژه آن بیمار خاص ارائه دهد.
حسینی ادامه داد: بررسی داده های عملیاتی بیش از ۱۹۰ هزار مورد بستری در ۱۵ بیمارستان نشان می دهد، بیمارانی که میبایست در آی سی یو پذیرش میشدند، اما در بخش دیگری از بیمارستان (برای مثال، بخش عمومی) بستری شده اند، دوره اقامت طولانیتری در بیمارستان داشته و نرخ پذیرش دوباره آنها هم افزایش یافته است.
او گفت: اگر ظرفیت آی سی یوی مورد نظر محدود باشد، مسئولان بیمارستان ممکن است گزینه های مختلفی مانند بستری کردن بیمار در یک واحد دیگر (مثلا، آی سی یوی جراحی بجای پزشکی) یا ترخیص بیمارانی که در حال حاضر در آی سی یو هستند را برای ایجاد فضا در آی سی یو درنظر بگیرند و البته برپایه تحقیقات گزینش هر یک از این دو رویکرد، پیامدهای مهم و ناخواسته ای دارند. الگوریتمهای پشتیبان تصمیم گیری میتوانند این پیامدها را کاهش دهند، هزینهها و منافع انتخابهای مختلف را بسنجند و توصیههای مناسب ارائه دهند.
وی در ادامه سخنانش تشریح کرد: از الگوریتمها همچنین میتوانیم برای خودکارسازی وظایف عملیاتی استفاده کنیم. در یک مجموعه آزمایشها از پزشکان و کارکنان «آمازون مکانیکال ترک» Amazon Mechanical Turk خواسته شد یک واحد بیمارستانی شبیهسازی شده را مدیریت کنند، یافتههای این آزمایشها نشان داد سوگیریهای رفتاری و خطاهای تصمیمگیری مبتنی بر شناخت، ممکن است بر تصمیمهای عملیاتی تأثیر بگذارند. با جدا کردن تصمیم گیری به دو بخش بالینی و عملیاتی و استفاده از الگوریتمها برای خودکارسازی مؤلفه عملیاتی به نتایج بهتری میانجامند.
طبق گفته حسینی در بخش های بیمارستانی، الگوریتمهای یادگیری ماشین (Machin learning) و پشتیبان تصمیم گیری میتوانند برای پیشبینی تعداد مورد انتظار پذیرش ها، ترخیصها و انتقال بیماران به بخش استفاده شوند و این پیشبینیها، روند اقدامات بعدی را هدایت میکنند و بدین ترتیب روند گردش تختهای بیمارستان تسهیل میشود، سفر بیمار بهبود مییابد و از مدت اقامت بیماران کاسته میشود.
او در ادامه سخنانش با بیان اینکه پیشبینیهای هر بخش در کارتابل مدیریت تختها در کل بیمارستان نه تنها وضعیت فعلی هر بخش را نشان میدهند، بلکه پیشبینیهایی نیز برای وضعیت آینده مورد انتظار در بیمارستان ارائه میکنند، تصریح کرد: نتایج نمونههای اجرا شده بسیار امیداورکننده است برای مثال یک مرکز پزشکی در بوستون امریکا، با همکاری گروهی از پژوهشگران دانشگاه ام آی تی کارپوشههای پیشبینی شده برای پشتیبانی از تصمیمگیریها در زمینه پذیرش و انتقال بیماران را با نمایش آمار فعلی هر بخش و همچنین تعداد ترخیصهای پیشبینیشده اجرا کرد و به همین ترتیب، یک بیمارستان کودکان در بوستون امریکا از سامانه پیشبینی کننده تعیین جا برای بیمار استفاده میکند که با کمک آن بخش اورژانس میداند چه بیمارانی احتمالاً در بیمارستان پذیرش شده و در کدام بخش بستری میشوند.
وی افزود: به این ترتیب کارتابل مدیریت تخت های بیمارستان، برنامه ریزی بهتر و ارتباطات پیشرفته را در بخش های مختلف امکانپذیر می کند و البته این فرایند می تواند به سامانه هشداردهی خودکار تجهیز شود برای مثال وقتی که میانگین زمان انتظار برای تخت جدید از آستانه پیشبینی شده عبور کند، هشدار بدهد.